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Abstract
The properties of the natural modes in a dispersive stratified N-layer medium
are investigated. The focus is on the (over)completeness properties of these
modes. Also the distribution of the natural frequencies is considered. Both the
degree of (over)completeness and the natural frequency distribution turn out to
be totally different from what is known for the non-dispersive case.

PACS numbers: 02.30.−f, 42.25.−p, 42.70.Qs

1. Introduction

Natural modes arise in connection with the scattering of an incoming wave on an object.
In this context, they are defined as those solutions of the scattering operator which exist in
the whole three-dimensional space R

3, satisfy the boundary conditions at the surface of the
finite scatterer, and represent outgoing waves outside the medium. Natural modes were first
discovered by Cauchy in 1827 [1], and then later applied by Thomson [2], Kolácěk [3], and
Abraham [4] to various scattering problems. For a non-dispersive medium they are known to
have the following properties [5–7]:

(a) They are complete within the open domain, but not always up to the boundary. (Think
of Gibbs’ phenomenon of a Fourier series, not necessarily representing the approximated
function at the endpoints.)

(b) Mathematically they are ‘double’ complete, there are two complete sets of natural modes.
(c) The complex eigenvalues kn satisfy kn = −k∗

n.

In this paper, completeness of the natural modes is understood to mean that the solution of the
governing partial differential equation, subject to the boundary conditions set by the physical
system, can be written as a linear combination of the natural mode eigenfunctions, i.e. this
solution and the linear combination of eigenfunctions are ‘arbitrarily close’ to each other. As
these eigenfunctions satisfy the same partial differential equation, they are a subset of L2

loc and
hence the definition of completeness given in appendix A.3 also applies to them.
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An example from quantum mechanics [8] can give a general idea of the concepts involved.
From the time-independent Schrödinger equation

(∇2 + k2)ψ(�r) = U(�r)ψ(�r) (1)

and the Green’s function associated with it

G(�r, �r ′; k) = eik|�r−�r ′ |

|�r − �r ′| (2)

we derive the corresponding scattering integral equation

ψ(�r) = ψ(i)(�r) − 1

4π

∫
V

ψ(�r ′)U(�r ′)G(�r, �r ′; k) d3r ′. (3)

It is of fundamental importance to note that this integral equation is not the standard Fredholm
integral equation of the second kind because of the nonlinear dependence of the kernel on k.
Therefore, the natural modes are a generalization of the results of classical Fredholm theory:
they are the solutions of the homogeneous integral equation in terms of which it is to be
expected that the solution of the scattering integral equation can be written inside the domain
of the scatterer.

Mathematically, natural mode eigenfrequencies are complex eigenvalues of a linear or
linearized differential equation, subject to certain non-classical Sturm–Liouville boundary
conditions, see [9–14]. In optics (if this differential equation is the wave equation), these
eigenfrequencies correspond to the singularities of the system, i.e. the singularities of the
scattering matrix [15]. Physically, the natural mode formalism is a tool to describe the energy
dissipation of a system. The imaginary parts of the eigenvalues indicate the amount of the
energy loss of the system. (Similar to a harmonic oscillator with damping; the imaginary
part of the frequency equals the damping coefficient.) As such it is used in various fields of
physics, ranging from classical wave mechanics, computational biophysics and mathematical
physics to general relativity and quantum gravity. (See, e.g. [16, 17] for applications in general
relativity.)

In the context of photonic crystals a (complex) natural mode frequency can be related to
the transmission spectrum of the medium: the real part of the frequency indicates the position
of a resonance peak, and its imaginary part corresponds to the full width at half maximum of
the peak. In other words: if the wavelength is chosen to correspond to the real part of the
natural mode frequency, then the photonic crystal will transmit more electromagnetic radiation
than otherwise.

Another important property of natural modes in general is that they can exist in the medium
without the presence of an incoming or driving field ψinc. This can be understood in terms of
internal (electron) oscillations of the scatterer: those oscillations will continue even after the
driving field is long gone.

This paper is organized as follows: the following section concerns the calculation of
natural mode frequencies in the physically important special case of (non-dispersive) photonic
band gap (PBG) media. The third section covers similar calculations for dispersive stratified
N-layer (SNL) media: it is shown that the natural mode frequencies cluster near the resonances
in the Lorentz model. The fourth section addresses the question whether the natural mode
eigenfunctions can describe the actual electromagnetic field in a dispersive (SNL) medium, (i.e.
whether they are complete according to the definition given in appendix A.3), and whether
such a representation is unique (i.e. whether they are ‘overcomplete’). Some concluding
remarks are made in the final section.
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2. Natural mode frequencies and non-dispersive N-layer media

The goal of this section is to find natural mode eigenfrequencies of stratified non-dispersive
n-layer media whose respective refractive indices are assumed to be constant. These
eigenfrequencies can be defined as the singularities in the transmission and reflection
coefficient of the system. (see, for instance [5] and [15]) which both therefore, as we know,
have the same denominators.

Generally, for a system of two layers or more, the natural mode frequencies cannot be
found exactly. They satisfy a transcendental equation, which can be solved numerically or for
‘large’ values (for more details, see appendix A.1).

However, if we limit ourselves to the case of normal incidence (so there is no angular
dependence), and TE transmissions in a periodic medium, we can find the resonance
frequencies exactly in, for instance, a system of four periods. Each period consists of two
layers each with refractive indices n1 and n2, respectively. Another restriction we would like
to make is the following: the thicknesses of the two layers d1 and d2, respectively, are chosen
in such a way that

n1d1 = n2d2 = λref

4
, (4)

for a certain λref . As is well known, this particular choice, which defines the class of so-called
quarter-wave stacks, simplifies to a great extent the analysis of the system at hand, [18]. We
remark in passing that these systems are optimized for reflection of pulses with center λref ,
because the reflected waves from each layer are all exactly in phase at this wavelength. Such
a medium can be used to create planar dielectric waveguides, for instance. For more details
we refer to [19].

According to Wolter [18], for the case of TE illumination, the numerator (Zm) and the
denominator (Nm) of the reflection coefficient for a 2D stratified N-layer system may be found
by means of the following recursive relations1:

Zm = (gm − gm−1) e−iδm−1Nm−1 + (gm + gm−1) eiδm−1Zm−1 (5a)

Nm = (gm + gm−1) e−iδm−1Nm−1 + (gm − gm−1) eiδm−1Zm−1 (5b)

Z1 = g1 − g0, N1 = g1 + g0, (5c)

where m represents the number of interfaces (see, figure 1) and the following shorthand
notations are used:

gm := nm cos θm

μm

, δm := nmdmω cos θm

c
. (6)

These formulae apply to a general 2D stratified N-layer system. Note that we use a different
sign convention from the one Wolter used: we assume a time dependence of e−iωt , whereas he
chooses one of eiωt . Wolter’s recursion formula follows from the requirement that the fields
and their derivatives must be continuous at the interfaces. Then, for a single layer (m = 2, see
figure 1) it follows that we have:

Z2 = (g2 − g1)(g1 + g0) e−iδ1 + (g2 + g1)(g1 − g0) eiδ1 (7a)

N2 = (g2 + g1)(g1 + g0) e−iδ1 + (g2 − g1)(g1 − g0) eiδ1 . (7b)

The frequencies of the natural modes are the zeros of (7b). This equation can be solved
exactly, but this is no longer possible in the case of two- and more layers, (for more details,
see appendix A.1).
1 The numerator of the transmission coefficient of a system with m interfaces is 2m

∏m
i=1 gi , and as noted its

denominator is identical to that of the reflection coefficient.
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Figure 1. Sketch of the parameters and geometry of the problem. There are m interfaces and m−1
slabs. As we assume normal incidence (θm = 0) there is no angular dependence.

Figure 2. Natural mode frequencies of two non-dispersive, 1D SNL media quarter-wave stacks.
The polygons represent the mode frequencies of an eight-layer system and the asterisks represent
those of a 16-layer system. The ratio between the refractive indices of the two layers is n1

n0
= 1.5

in both cases.

In the particular case of normal incidence we have cos θm = 1 for all integers m. Also there
are only two possible values of nm and only one possible value of nmdm. As a consequence,
there are only two possible values for gm (μm = 1 for all integer m) and only one variable δ.
We will restrict ourselves to non-magnetic media, namely μm = 1.

As Settimi et al [20] noted, under these (restrictive) conditions natural mode frequencies
of N-layer media can be found exactly. The natural frequencies of an eight- and a 16-layer
system are plotted in the complex plane in figures 2 and 3.

Something similar applies to the TM case; only the following definition needs to be
changed with respect to the TE case:

gm := μm cos θm

nm

. (8)

Because we chose this medium to be non-dispersive the refractive indices are constant, so
only the values of the parameters change, not the actual pattern of the mode frequencies. (It
is useful to remember that Settimi and Wolter use different conventions regarding the time
dependence of the oscillations, just like in the previous case.)
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Figure 3. Natural mode frequencies of a non-dispersive, 1D SNL medium with four quarter-wave
stacks. The ratio between the refractive indices is in this case n1

n0
= 2.

As we noted before, the real part of a natural mode frequency corresponds to the position
of a resonance peak in the transmission spectrum; its imaginary part is related to the broadness
(the full width at half maximum) of the peak. The eigenfrequency distributions shown in
figure 2 leads to the observations that the number of peaks within an interval 0 � Re(δ) � π

increases proportionally to the number of layers (a system of N layers leads to a polynomial
of degree N in eiδ). Also, the peaks become narrower (the imaginary parts of the natural mode
frequencies are lower) in a system of 16 layers than in a system of eight layers. However, the
position of the ‘gap’ (i.e. interval in the spectrum without peaks) does not change. Increasing
the ratio between the two refractive indices results in lower (absolute values of) imaginary parts
of the mode frequencies, so resonance peaks in the transmission spectrum become narrower.
These results were found in [20] and confirmed by (5).

3. Calculation of natural mode frequencies in dispersive media

In this section we shall investigate the consequences of allowing the medium to be temporally
dispersive. The refractive index of the j th layer becomes

n2
j (ω) = 1 +

fj

ω2
j − ω2 − i�jω

, (9)

for a characteristic frequency ωj and a damping coefficient �. The other parameter, fj , is a
fraction that denotes the oscillator strength of the material, i.e. we assume a Lorentz profile.
For simplicity, the refractive indices are assumed to have only one singularity each. The
results in this section are no longer limited to quarter-wave stacks, but we still assume normal
incidence.
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Figure 4. The mode frequencies of a single layer system cluster near the singularities of the
refractive index at (±1,−0.0005). The mode frequencies are symmetrical around the imaginary
axis. This graph is in units ω0.

We will first deal with the case of a single layer system. For the calculation we use the
scale of the characteristic frequency, in other words ωj = 1. Because of (7b) we know that

for values of the frequency close to the singularities ω = ±
√

ω2
j − i�jω, which means that

|n1(ω)| � 1, the frequencies have to satisfy the following equation:

sin

(
ω

c
· d

√
fj

1 − ω2 − i�jω

)
= 0. (10)

The other choices for the calculation are: d = 1, fj = 0.25, �j = 10−3 and n0 = n2 = 1.
(The environment of the medium is air or vacuum.) Formula (10) can be derived by setting
m = 2 in Wolter’s recursive formula (5), and neglecting 1 with respect to fj

ω2
j −ω2−i�j ω

because

we are near either one of the singularities of (9).
As figure 4 shows, the mode frequencies cluster near the singularities of n1(ω). Also,

there are no frequencies to the outside of the outermost singularities.
Analogously, for a system of two layers the mode frequencies display the same pattern:

near the singularity of the refractive index of each of the respective layers they cluster near the
aforementioned singularity. Also, in both cases, there are no mode frequencies to either the
left or the right of the outermost singularities of the refractive indices, i.e. no eigenfrequencies
with |Re(ω)| � ω1. Inserting m = 3 into Wolter’s recursive formula yields the following
transcendental equation for the eigenfrequencies:

(1 + g2){(g2 + g1)(1 + g1) exp(−iδ1) − (g2 − g1)(g1 − 1) exp(iδ1)} exp(−iδ2)

+ (1 − g2){(g2 − g1)(g1 + 1) exp(−iδ1)

+ (g2 + g1)(g1 − 1) exp(iδ1)} exp(iδ2) = 0, (11)

where g1,2 = n1,2(ω), δ1,2 = ω
c
n1,2(ω)d1,2 and g0 = 1 = g3. Now let us look for

eigenfrequencies near the resonance of the refractive index of the first layer. This means
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that |g1| � 1, |g1| � g2, g2 and n2(ω) are approximately constant, and |δ1| � 1, hence we
obtain

−(1 + n2(ω)) sin

(
ω

c
n1(ω)d1

)
exp

(
i
ω

c
n2(ω)d2

)
+ (1 − n2(ω)) sin

(
ω

c
n1(ω)d1

)
exp

(
−i

ω

c
n2(ω)d2

)
= 0. (12)

Note that, in principle n2(ω) is also frequency dependent, but this can be neglected near the
resonance of n1(ω). After some manipulations of trigonometric functions we conclude that,
instead of (10), the mode frequencies now have to satisfy

sin

(
n1(ω)d1

ω

c

)
cos

(
n2(ω)d2

ω

c

)
+ n2(ω) cos

(
n1(ω)d1

ω

c

)
sin

(
n2(ω)d2

ω

c

)
= 0 (13)

near the singularity of the first layer (where n1(ω) � 1). The equation for the natural mode
eigenfrequencies is

sin

(
n2(ω)d2

ω

c

)
= 0 (14)

near the resonance of the second layer (where n2(ω) � 1). This formula is derived in
approximately the same way as (10): the indices of refraction n1,2(ω) as a function of the
frequency are given by equation (9), and neglect 1 with respect to g2 in equation (11).
Equation (14) is the same as (10), so the pattern of the mode frequencies must be the same as
well. Near the electron resonance frequency of the first layer ω1 we see the same clustering
accordance with formula (13).

With the aid of a famous theorem from function theory, namely the great Picard theorem it
can be shown that such clusterings always occur in a system with an arbitrary number of layers.
The great Picard theorem states that an analytic function assumes every complex value, with
one possible exception, infinitely many times near an essential singularity2. From Wolter’s
recursive relation (5) it can be concluded that the functions occurring in systems like this are
exponential functions (or sines and cosines, if you prefer). In the case of TE polarization, the
dispersion model (9) gives rise to singularities both inside and outside the arguments of the
exponential functions, so we have an equation of the type

∑
p Ap(ω) exp

(
iBp(ω)ω

c
d
) = 0,

where both Ap(ω) and Bp(ω) are meromorphic functions of ω with singularities in the complex
ω-plane. Only the singularities of the arguments of the exponential functions (those of Bp(ω))
are essential ones, the others are poles. After all, Ap(ω) is a polynomial in the refractive
indices nj (ω) which depend on frequency according to (9), and Bp(ω) depends linearly on
nj (ω). According to the great Picard theorem, clusterings like those we have seen in two
special cases also occur more generally, in any stratified N-layer medium in the case of TE
polarization.

If the polarization is transversal magnetic, then the definition of the coefficients gm changes
according to (8). The coefficients δm remain the same as in the transversal electric case. This
means that the electron resonance frequencies are also essential singularities in the TM case.
Therefore, Picard’s great theorem can be applied again and there will be a similar clustering
near the resonances.

In terms of transmission spectra, we are not quite sure what this distribution of eigenvalues
means. Possibly, because of the positions of the natural mode eigenfrequencies in the complex
plane, the peaks may shift slightly closer to the origin and become slightly narrower with
respect to the peak at ±ω0 and the FWHM of 1

2�. However, this is not the reason for

2 See appendix A.2.
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calculating such eigenfrequencies. We have done these calculations because we suspect such
clusterings to represent a complete set of modes (see the analysis given in the following two
sections).

4. The (over)completeness of the natural modes of dispersive media

4.1. Introduction

This section focuses on the question of how ‘physical’ natural modes are, i.e. whether the
modes can represent physical quantities such as wavefunctions of electromagnetic radiation.
That is why we look into the completeness of the natural modes. So the question is if a solution
electromagnetic wave equation subject to the boundary conditions set by the stratified N-layer
medium, can be written as a linear combination of the natural mode eigenfunctions.

Starting with a one-dimensional wave equation, Leung et al [5] showed that the poles
of the Fourier transform of the Green’s function, Ĝ(x, y;ω) correspond to the frequencies
of the eigenmodes (which Leung calls quasinormal modes). Alternatively put, the poles of
Ĝ(x, y;ω) are the natural mode frequencies. Also it was stated that a physically necessary
and sufficient condition for completeness of the modes is

lim
|ω|→∞

Ĝ(x, y;ω) = 0 (15)

in the lower half-plane of the complex variable ω.
However these results did not seem entirely satisfactory, because the modes are actually

overcomplete; in other words: a representation of the wavefunction or the Green’s function
in terms of an eigenfunction expansion is not unique. To determine ‘the degree of
(over)completeness’ Leung et al [7] introduced a two component formalism: a vector
was introduced with one component equal to the wavefunction and the other equal to the
time derivative of the wavefunction. From this it was concluded that the natural modes
corresponding to one singularity represented the completeness of the expansion of the
wavefunction, and the natural modes of the singularity next to it represented the completeness
of the time derivative of the wavefunction.

The results of Leung et al [5, 6] apply both to non-dispersive media as well as to dispersive
media. The goal of this section is to extend the results of [6] in the following sense: Leung
et al [6] showed that an overcomplete set of natural modes is generated by the singularity at
∞ of the dielectric function for ω, namely ε = ε∞ + ε1

ω
+ O

(
1
ω2

)
. We will show that each

singularity of the dispersive dielectric function in the ω-plane, which physically corresponds
to a spectral line, generates an overcomplete set of natural modes!

Dispersion is traditionally phenomenologically introduced by assuming that the refractive
index depends on the (time) frequency [21]. Therefore, we have to start in frequency space
with the Helmholtz’s equation(

∂2

∂x2
+

ω2

c2
n2(x, ω)

)
ψ̂(x, ω) = 0, (16)

instead of the usual wave equation (in one dimension). The ‘hatted’ functions denote the
temporal Fourier transform of the ‘unhatted’ functions. Furthermore, n2(x, ω) is assumed to
be a ‘wellbehaving’, differentiable function almost everywhere in the ω-plane and to have
a few discontinuities in the x-direction and is supposed to be integrable with respect to x.
Note that equation (16) is the 1D Helmholtz equation, which implies we still assume normal
incidence.

8
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In order to find out what (16) means to the system in time space we have to apply an
inverse Fourier transform

∂2

∂x2
ψ(x, t) − ∂2

∂t2

1

c2

∫ t

0
ρ(x, t − t ′)ψ(x, t ′) dt ′ = 0. (17)

The integro-differential equation (17) can be interpreted as a medium with a memory: the
whole time interval from zero to t is relevant for the physics and therefore represented in the
equation of motion. For instance, in terms of the Lorentz model one can think of electrons
that start to oscillate because of the arrival of the em wave. Through these oscillations they
affect the part of the wave that has yet to enter the medium. Some books, like [21] introduce
dispersion in this way.

4.2. (Over)completeness of the natural modes of a slab

The problem to be addressed to in this section concerns the (over)completeness of the set of
natural modes. As we already observed before for the case of a slab each singularity of the
refractive index, namely ω = ±

√
ω2

j − i�jω leads to an infinite number of natural frequencies
and natural modes. This statement follows from the observation that close to the singularity
the approximate equation to be satisfied by the natural frequencies ω (see (10))

sin

(
ω

c
· d

√
fj

ω2
j − ω2 − i�jω

)
= 0, (18)

generates for each singularity an infinite number of roots, as the great Picard theorem tells us
that near the essential singularities ±

√
ω2

j − i�ω each complex value is obtained an infinite
number of times. Hence the question arises whether these successive sets of modes are each
complete or not. The key to the solution of this problem is the analysis of the behavior of the
distribution of the natural frequencies. We refer to the books by [22] and [23]. Before going
into more detail we wish to remark that we will freely switch between the concepts ‘closure’
and ‘completeness’, as Paley and Wiener showed [23] that these two concepts are equivalent
(see appendix A.3 for definitions of both terms).

For a slab made of dispersive material, embedded in vacuum, the natural frequencies ωn

are the roots of (7b), and the natural modes read as

sin
(ωn

c
x + φ

)
, (19)

the natural mode eigenfunctions are therefore specific linear combinations of functions of the
form e±i ωn

c
y . Paley and Wiener [23] studied completeness properties of this type of functions

(see appendix section appendix A.3 for some of their most relevant results).
The goal is now to apply some of the work of Paley and Wiener in order to prove

the completeness of systems of natural modes pertaining to a single dispersive slab. More
particularly, we wish to apply theorem 7.

We will now apply the Paley–Wiener theorem [23] for the case of a slab and construct
therefore the canonical product F(z),

F(z) =
∏
m
=0

(
1 − z

λm

)
(20)

(see (A.16)). The multiplication runs over all the eigenvalues λm of a set of natural modes,
the zeros of the canonical product must correspond to the eigenfrequencies. Then, the Paley–
Wiener theorem tells us that a set of natural modes is then, and only then, complete if the
canonical product (20) is not square integrable L2(R).

9
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Alternatively put: furthermore, two cases are distinguished: either the frequency is close
to one of the resonances, or its absolute value tends to infinity. In the former case, let

z := n(ω) ⇔ λm = n(ωm). (21)

And if |ω| → ∞, then

z := ω

c
d ⇔ λm = ωm

c
d. (22)

One might say that the canonical product interpolates the eigenfrequencies, therefore z is
associated with ω and λm with ωm. The reason we distinguish these two cases is that both
the resonances and infinity are essential singularities of this system. As we have seen in
section 3 such singularities give rise to infinitely many natural modes. Therefore each of
these ‘clusterings’ is a candidate to be a complete set of modes. (Note that, the fact that there
are infinitely many natural modes near one such singularity is not a proof that the modes are
complete.) Also it follows from the requirement that the canonical product must be in L2(R) if
and only if it tends to zero faster than z− 1

2 . We shall take advantage of this when investigating
the natural modes’ completeness in this section.

We will now show that that the canonical product has the following behavior for large
values of |z|:

F(z) =
∞∏

m=1

(
1 − z

λm

)
∼ p(z) sin(z), (23)

where p(z) is a polynomial in z that may contain negative powers of z

p(z) :=
n∑

j=−l

aj z
j , l and n are positive integers. (24)

This is the form of the canonical product in both the cases |ω| ⇒ ∞ and ω ⇒ ωm, where ωm

represents the resonance frequency.
First let us consider the case |ω| → ∞. According to the dispersion model (9) the

refractive index can be approximated by

n(ω) = 1 − A

2ω2
+ O

(
1

ω3

)
(25)

for a certain constant A. Wolter’s formula (5) for one layer yields the following equation for
the eigenfrequencies:(

2 − A

2ω2

)2

exp

(
−i

ω

c

(
1 − A

2ω2

)
d

)
− A2

4ω4
exp

(
i
ω

c

(
1 − A

2ω2

)
d

)
= 0 (26)

multiplying by ω2

A
gives

sin

(
1

i
log

(
4ω2

A

)
+

(
ω − A

2ω

)
d

c

)
= 0 (27)

which implies that the argument has to equal mπ (we choose the principal value for the
complex logarithm). If |ω| is chosen sufficiently large, then the term linear in ω will dominate
the other terms. Iterating once and neglecting terms of order 1

ω
yield

ωm = c

d

(
mπ − 1

i
log

(
4m2π2

Ad2

))
m ∈ Z\{0}. (28)

10
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For this case it seems appropriate to define z = z′d, so that λm = ωm

c
d. From now on we will

write z instead of z′. The associated canonical product constructed from the eigenvalues for
large values of |z| reads as [23]

F(z) = p(z)
∏

m∈Z\{0}

(
1 − z

mπ + i log
(

4m2π2

Ad2

))
. (29)

It is shown in the appendix that for large values of |z| the modulus of the product L(z)

L(z) =
∏

m∈Z\{0}

(
1 − z

mπ + i log
(

4m2π2

Ad2

))
(30)

tends to a constant. Hence combination of (29) and (30) leads to

|F(z)| ∼ |p(z)| · const. 
= 0. (31)

Depending on the polynomial p(z) each resonance generates either a (over)complete set of
modes if the polynomial contains only positive powers of z, or a set of modes which is not
complete if the polynomial contains only negative powers of z. However, if this is the case,
such an incomplete set can be made complete by the addition of only a finite number of modes
generated by one of the other singular points.

This means that for a 1D dispersive stratified N-layer medium, the natural modes are at
least N + 1-fold complete, if it is assumed that each layer has two resonances. Alternatively
put, the Green’s function or the wavefunction for a photonic crystal with 2N resonances can
be expanded in terms of natural mode eigenfunctions in at least N + 1 ways.

This completes the proof of (23).
Writing F(z) like equation (23) simply means that we include eigenfrequencies that are

still in the vicinity of one of the singularities (either at one of the resonances or at infinity),
but not close enough to one of them to display the pattern λm = mπ .

Equation (A.18) can be verified as follows: let ε → ∞, n = 0 and A = ε then because
of the form (23) we can write F(y + iε) ∼ exp(ε). Also it is clear that condition (A.16) holds:
λm is at most linear in m. So theorem 7 can be applied.

As the eigenfrequencies ωm cannot be determined exactly, the precise form of p(z) also
remains unknown. The modes that display the pattern λm = mπ are not complete: they yield
F(z) = sin z

z
which is in L2(R). However, these modes correspond to the case of a clamped

string without the important eigenmode z = 0 (no oscillation). They do not aptly describe
this system as it is open, unlike a clamped string. This does tell us that the modes are not
complete if we take the neighborhood around one of the resonances too small. Depending on
the asymptotic behavior of p(z), we distinguish two possibilities

(a) p(z) only contains negative powers of z. As F(z) is an entire function, a sufficient
condition for F(z) to be in L2(R) is

lim
x→∞

√
xF(x) = 0, (32)

where x is real. So in this case the canonical product is in L2(R), and according to
theorem 7 the natural modes are not complete. The same theorem also states that in this
case, the corresponding set of eigenfunctions can be made complete by the adjunction
of a finite number of functions of a similar form. To this end, some other natural mode
eigenfunctions can be used. However, there is no physical reason to prefer one natural
mode to another. Neither is there a physical reason why, say, q natural modes are required
to make them complete and not another number.

11
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(b) p(z) contains at least one positive power of z. Then F(z) /∈ L2(R) and the natural modes
in this area are complete.

Whichever possibility is the correct one, from physical considerations it seems that the
natural modes in the neighborhood of the resonances are complete anyway. If more layers
are added to the system, more resonances will occur. This means there will also be more
clusterings of natural modes near these resonances. So, a system of N slabs is at least N-fold
complete, even if p(z) contains only negative powers of z.

5. Conclusions

The analysis of the pertinent properties of these fundamental modes, to be considered as the
most ‘natural’ set of functions for the expansion of the field, is of paramount interest. The
completeness property of the field is especially one of the most important and interesting
features of these modes are to be studied. In some special cases, for instance in a non-
dispersive, periodic 1D SNL medium with quarter-wave stacks, the natural modes formalism
is an efficient tool to reveal information about transmission spectra of such media.

In [5], Leung et al showed that, for a system described by the 1D wave equation
without dispersion, a sufficient (and possibly necessary) condition for completeness of the
natural modes is that the Fourier transformed Green’s function vanishes for sufficiently large
frequencies. The generalization to dispersive media is relatively straightforward: the same
condition applies, although the expression for eigenmode expansion coefficients is slightly
more complicated [6]. This result is obtained without outlining a specific dispersion model.

In order to investigate the degree of (over)completeness of natural modes in 1D photonic
crystal we have chosen the following dispersion model:

nj (ω) =
√

1 +
fj

ω2
j − ω2 − i�jω

for the j th layer of the medium. If each layer of the photonic crystal is assumed to have
two resonance frequencies, then the natural modes in a medium of N layers is at least N + 1
fold complete. As of yet, we are unsure of what this tells us about either the natural mode
formalism or the used dispersion model.

(Over)completeness of the natural mode expansion may imply that natural modes are
‘physical’ in a certain way, but it does not mean that they are useful (we may still need an
unpractically large number of modes to aptly describe our system). Based on [24] we suspect
that, in the typical photonic crystal region, where the wavelength of the electromagnetic
radiation is of the same order of magnitude as the thickness of a layer, that electromagnetic
wave couples to only a few modes. Currently, however, there is still no proof of this.

Our results were derived for dispersive SNL media with normal incidence. To generalize
to 2D systems (i.e. for θm 
= 0 in figure 1) Wolter’s recursive formula (5) can still be
used. Obviously the angle of incidence θm does not depend on frequency but the angles
of refraction do, which would complicate such an analysis. However it seems likely that the
Lorentz resonances also form essential singularities in this case, and hence the natural mode
frequencies also cluster near the resonances. (The only way for this not to happen would
be if the frequency dependence of the angles of refraction somehow removed the essential
singularities.) So in 2D we would expect the same degree of ‘overcompleteness’ to occur as
in 1D. In 3D, Wolter’s formula is no longer valid because both the TM and the TE modes
contribute to the electromagnetic pulse. In this case, the transfer matrix method [19] can be
used to investigate the completeness properties of the natural modes.

12
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Appendix A. Mathematical theorems on the properties of functions

A.1. Roots of exponential sums

Equation (5) shows that trying to find the natural mode frequencies leads to a transcendental
equation (more specifically, an exponential sum). Mathematicians studied roots of such
equations in the 1930s. In this appendix, some useful theorems and results will be given
(without proof). For more details see [27], [28] and [29].

Langer [27] derived the following theorem:

Theorem 1. If the constants Bj are real and

0 = B0 < B1 < · · · < BJ (A.1)

then for |ρ| sufficiently large the roots of the equation
J∑

j=0

[bj ]eρBj = 0, b0 
= 0, bJ 
= 0 (A.2)

lie in the strip bounded by the lines

Re(ρ) = ±c, (A.3)

where c is a suitably chosen real constant. The number N of roots lying in any interval of this
strip of length l satisfies the relation

BJ l/(2π) − (J + 1) � N � BJ l/(2π) + (J + 1). (A.4)

Moreover if ρ remains uniformly away from the zeros of (A.2) the left-hand member of the
equation is uniformly bounded from zero.

This result is useful because it concerns exponential sums of the type we have encountered
in sections 2 and 3. Because the imaginary unit i occurs in arguments of the exponents of the
sum in (5), the imaginary parts of the natural mode frequencies are bounded. Also theorem 1
tells us that the number of roots is proportional to the length of the strip. This implies that
there are infinitely many natural modes in the entire complex plane (if we stay sufficiently far
away from the origin).

The next result, which Langer [28] obtained a few years later, is also relevant to us.

Theorem 2. If in the exponential sum

(z) =
n∑

j=0

Aj ecj z (A.5)

the coefficients are constant and the exponents commensurable (the arguments of the exponents
are integer multiples of each other), the sum becomes of the form

(z) =
n∑

j=0

aj (e
αz)pj , p0 = 0, pj ∈ N (A.6)

and the distribution of the zeros is given explicitly by the formula

z = 1

α
(2mπ i + log ξj ), ξj := eαz (A.7)

where m ∈ Z and j is a natural number � pn.
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This may seem complicated at first but the special case of commensurable exponents is
actually theoretically the simplest one, because it makes the problem of the distribution of
the zeros essentially an algebraic one. This is also the theorem we used for the calculations
in sections 2 and 3. The assumption of commensurability is no doubt a limiting one, but it
includes a few important special cases, such as a trigonometric sum (a partial sum of a Fourier
series).

Also, without assuming commensurability, Langer [28] showed that theorem 1 is not only
valid far away from the origin, but everywhere in the complex plane.

A.2. Some theorems from function theory

Theorem 3 (‘Great Picard Theorem’). Suppose an analytic function f (z) has an essential
singularity at z = a. Then in each neighborhood of a, f (z) assumes each complex value, with
one possible exception, an infinite number of times.

Proof and corollaries can be found in most textbooks on function theory, like [30].
This is the type of singularity we encountered in section 3. The analytic function in

this case is the denominator of the reflection coefficient. The essential singularity is the
(electron) resonance frequency. Of course zero includes the complex values this function
assumes infinitely many times near the essential singularity, which explains the clustering of
roots displayed in figure 2.

The ‘one possible exception’ is any function of the form e1/z near z = 0. This type of
function cannot assume zero since it has no roots.

We also require the

Theorem 4 (‘Weierstrass factorization theorem’). Let f be an entire function and let {an}
be the nonzero zeros of f repeated according to multiplicity; suppose f has a zero of order
m � 0 (a zero of order 0 at z = 0 means f (0) 
= 0). Then there is an entire function g and a
sequence of integers {pn} such that

f (z) = zmeg(z)

∞∏
n=1

Epn

( z

an

)
, (A.8)

where for every natural number p

E0(z) := 1 − z

Ep(z) := (1 − z) exp

(
z +

z2

2
+ · · · +

zp

p

)
, p � 0.

(A.9)

The numbers pn are chosen in such a way that the series

∑
n

(
z

|an|
)1+pn

< ∞. (A.10)

The function Ep(z) is known as the elementary factor. Note that Ep( z
a
) has a simple root

at z = a no other roots. In a way this is a generalization of Gauss’ main theorem of algebra
about the factorization of polynomials.
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A.3. Equivalence of closure and completeness in L2
loc

The set of functions {fn(x)} ⊂ L2(a, b) (a, b ∈ R, a > b) is said to be closed over (a, b) if∫ b

a

f (x)fn(x) = 0 (A.11)

implies f (x) ≡ 0 almost everywhere on (a, b) ∀f (x) ∈ L2(a, b). The set of functions
{fn(x)} is said to be complete if ∀f (x) ∈ L2(a, b), ε > 0 there is a polynomial

Pn(x) =
n∑
1

akfk(x) (A.12)

such that ∫ b

a

|Pn(x) − f (x)|2 < ε. (A.13)

For all practical intents and purposes, we can think of this as Pn(x) = f (x), because in our
application f (x) is a solution of a differential equation, so this more general formulation is
not needed for it. In [23] Paley and Wiener proved that

Theorem 5. A set of functions {fn(x)} ⊂ L2(a, b) is closed over (a, b) if and only if it is
complete.

This theorem is not hard to intuitively picture: it states that the only square integrable
function that is orthogonal to all functions of a complete set is the function that is identical to
zero. Analogously we can imagine that the only vector perpendicular to all the vectors of a
complete set of vectors is the vector with length zero.

We will need this relationship between closure and completeness for theorem 7. Also it
will be assumed that

lim
n→∞

λn

n
= 1. (A.14)

In this case the entire function

F(z) =
∞∏

n=1

(
1 − z2

π2λ2
n

)
(A.15)

exists according to theorem 4. (This statement follows from the conditions for this theorem 4,
taking pn = 0.)

Theorem 6. Let (A.14) be true. Furthermore, let F(z) ∈ L2(R). Then the set of functions
{e±iλnx} cannot be closed over (a, b). Again, let zF (z) ∈ L2(R). Then the set of functions
{1, e±iλnx} cannot be closed on L2(a, b). In either case, a finite number of the functions of the
set may be replaced by an equal number of other functions of the form eiλx .

For this application main theorem on the completeness (closure) of sets of functions of
the exponential type [23] is given below

Theorem 7. Let

lim
m→∞

|λm|
m

= 1 (A.16)

then according to the Weierstrass factorization theorem (see theorem 4 in appendix A.2 from
appendix A) the following entire function exists:

F(z) =
∞∏

m=1

(
1 − z2

π2λ2
m

)
(A.17)
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and let

|F(y + iε)| � A

1 + |y|n > 0 (A.18)

for all real y, some A > 0, and some ε and n. Then the set of functions {e±iλmy} will be closed
or not closed on L2(a, b) according to the fact that F(z) does not or does belong to L2(R).
It can always be made closed by the adjunction of a finite number of functions eiλy . The set
of functions {1, e±iλmy} will be closed or not closed on L2(R) according to the fact that zF (z)

does or does not belong to L2(R).

Another relevant result by Paley and Wiener is the following:

Theorem 8. Let (A.14) be true and let the set of functions {e±iλnx} be closed on L2(a, b) but
let it cease to be closed on the removal of some one term. Then it ceases to be closed on the
removal of any one term, F(z) 
∈ L2(R), but F(z) ∈ L2(1,∞). Again, if the set of functions
{1, e±iλnx} is closed on L2(a, b), but ceases to be closed on the removal of some one term, this
term is arbitrary, then zF (z) 
∈ L2(R) but F(z) ∈ L2(R).

Appendix B. The derivation of (31)

We start from the product L(z)

L(z) =
∏

m∈Z\{0}

(
1 − z

mπ + i log
(

4m2π2

Ad2

))
. (B.1)

Taking the logarithm of both the left-hand side and the right-hand side of equation (29) yields

log(L(z)) ∼ P

∫ ∞

−∞
log

(
1 − z

mπ + i log
(

4m2π2

Ad2

))
dm, (B.2)

where P denotes the Cauchy principal value. The ‘∼’ changes into an equal sign if the steps
in the canonical product are small enough. Then log(L(z)) becomes a Riemann sum of the
integral occurring on the right-hand side of (B.2).

Integration by parts changes the integrand into a fraction

P

∫ ∞

−∞

mz
(
π + i 2π2

Ad2m

)
dm[

mπ + i log
(

m2π2

Ad2

)]2
+ z

(
mπ + i log

(
m2π2

Ad2

)) . (B.3)

Substituting pm := mπ + i log
(

m2π2

Ad2

)
simplifies this integral considerably

log(L(z)) ∼ P

∫ ∞

−∞

m
dpm

dm
z dm

pm(pm + z)
. (B.4)

The integrand has two poles that correspond to pm = −z

m′
±(z) := 2i

π
W

(
± i

2
d
√

A exp
( iz

2

))
, (B.5)

and two poles at pm = 0

m′
±(z = 0) = W

(
± i

2
d
√

A

)
, (B.6)

where W denotes the (principal value of the) Lambert W-function[25, 26]. This function is
defined as the multi-valued solution W(z) of the equation z = W(z) exp(W(z)). The principal
value solution is one of the two real branches. As we chose the principal value of the complex
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logarithm, we also find the poles in terms of the principal value of the Lambert W -function.
The residues near these poles are

−2i

π
(m+(z) + m−(z) + m+(z = 0) + m−(z = 0)) − 4iπ2

Ad2
. (B.7)

The terms with m±(z = 0) correspond to the contribution due to the two poles at pm = 0.
Multiplying this by 2π i yields the outcome of the integral. Because we have chosen the
principal value of log(L(z)) we wish to estimate the modulus of this outcome. In order to do
so we use the relation |W(z)| = W(|z|)

0 <

∣∣∣∣ 8

π
(m+(z) + m+(z = 0)) +

8π3

Ad2

∣∣∣∣ � 16

π
W

(
1

2

√
Ad

)
+

8π3

Ad2
(B.8)

which does not depend on z! So the absolute value of the product (B.1) behaves as

|L(z)| ∼ const. 
= 0. (B.9)
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